Rank weights for arbitrary finite field extensions

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

$G$-Weights and $p$-Local Rank

Let $k$ be field of characteristic $p$, andlet $G$ be any finite group with splitting field $k$. Assume that $B$ is a $p$-block of $G$.In this paper, we introduce the notion of radical $B$-chain $C_{B}$, and we show that the $p$-local rank of $B$ is equals the length of $C_{B}$. Moreover, we prove that the vertex of a simple $kG$-module $S$ is radical if and only if it has the same vertex of th...

متن کامل

Finite Rank Toeplitz Operators: Some Extensions of D.luecking’s Theorem

The recent theorem by D.Luecking about finite rank Bergman-Toeplitz operators is extended to weights being distributions with compact support and to the spaces of harmonic functions.

متن کامل

Coins with Arbitrary Weights

Given a set of m coins out of a collection of coins of k unknown distinct weights, we wish to decide if all the m given coins have the same weight or not using the minimum possible number of weighings in a regular balance beam. Let m(n, k) denote the maximum possible number of coins for which the above problem can be solved in n weighings. It is known that m(n, 2) = n 1 2 . Here we determine th...

متن کامل

Pencils of Higher Derivations of Arbitrary Field Extensions

Let L be a field of characteristic p ^ 0. A subfield K of L is Galois if A' is the field of constants of a group of pencils of higher derivations on L. Let F d K be Galois subfields of L. Then the group of L over F is a normal subgroup of the group of L over K if and only if F = K(W') for some nonnegative integer r. If L/K splits as the tensor product of a purely inseparable extension and a sep...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics of Communications

سال: 2020

ISSN: 1930-5338

DOI: 10.3934/amc.2020083